
is fulfilled are arranged in the form of an increasing sequence of q: q = 1, 2, ..., Q. Then 
the sought value of po(n, ~ is determined by the expression 

Q Q--! 

po(n, ~ - - X g ( s q ) - -  ~.~y(s~+ 1 ) - - y ( 1 ) ,  
q : l  q=l  

(17) 

in the same way with the aid of formula (6) we find the parallel projection, and with a view 
to formulas (2), (3) we find the bundle projection for any image V(x, y) from among the class 
under examination. 

NOTATION 

x, 5' Cartesian coordinates; i, imaginary unit; r, ~, polar coordinates;w--x+ig=rexp!i~); 
=~+ iV= wexp(--i0); ~(x, V), absorption coefficient of radiation as a function of the coordi- 

nates (image of the section of the object); B, Y, bundle coordinates; p0(~) , parallel tomo- 
graphic projection; hE(y) , bundle tomographic projection. 
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SURVEYS 

INTERACTIONS OF ATOMS AND CALCULATION OF TRANSPORT COEFFICIENTS IN 

METAL VAPORS AND THEIR MIXTURES WITH GASES 

K. M. Aref'ev and M. A. Guseva UDC 533.15 

In kinetic theory [i, 2], the transport coefficients of a gas are expressed in terms of 
collision integrals. In particular, in the first approximation of the theory of Chapmanand 
Enskog, the viscosity and thermal conductivity of a dilute, single-component gas, and the 
coefficient of diffusion of a dilute binary mixture are given by the formula 

5 ]/'~mkT 
16 ~ o ~  ~2,2)* ' ( i )  

5 
~, : tic o 

2 ( 2 )  

(for a monatomic gas), 

3 ~/2~m12kT 
D12 -- _ _  2 o(~, I)* ( 3 )  16nm12 ~(Y12 real2 

The reduced collision integrals 

t \  rim12 / ' " 2 2 ( / +  1) ne l2  

are computed with the help of relations taking into account the interaction of molecules in 
collisions based on the conservation laws of mass, momentum, and kinetic energy: 

i dR/R~ 
%(g, b) - -  ~ - - -  2b [1 --b~/R ~ - -  ~(R)l(m1292/2)] 1/2 ' 

Rm 
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Q(~) (g) - 2u S (1 - -  cost;() bdb, 
0 

Q(l,s) = ] / - ~ T / ( 2 ~ n h .  ) i exp(---1, ~) ~;~+3 Q(o (g) dt,, 
O 

where 

�9 ~ = g (2kT/rnl~) '/~ . 

When R = R m, the denominator of the integrand in the expression for • goes to zero and 
the contribution of the kinetic energy ml2g2/2 is comparable to that of the effective potential 
energy (m12g2/2)(b2/R 2) + ~ (R), and this defines an equation for Rm. The collision integrals 
~q, 8) have the dimensions of velocity multiplied by the square of a linear dimension (area) 
and average the cross section Q(1) over the relative molecular velocities u with weight s. Both 
~(t,s) and the dimensionless reduced collision integrals ~q,s), depend on the interaction po- 
tential energy of the molecules ~(R). 

In the usual method of calculating the transportcoefficients, the Lennard--Jones or 
Buckingham potentials [i, 2] or the Monchick potential [3], are used for ~(R), and the inte- 
grals ~,~)* have been tabulated for several potentials as functions of the parameters. For 
example, in the Lennard--Jones potential 

(R) = 4~ [(~/R)*~ -- (q/R) 6] (4) 

the integrals ~q,~)* are given as functions of T* = kT/e. The parameters of the model poten- 
tials (g and s in the case of the Lennard--Jones potential) are found in the case of pure gases 
from experimental data on the viscosity (with the use of the formula given above for n from 
kinetic theory) and also can be estimated from the molar volumes of the solid or liquid phases, 
the critical molar volume, the melting and boiling temperatures, and the critical temperature. 
It is also possible to determine the potential parameters from the second virial coefficient of 
the equation of state. The parameters for binary mixtures are found in terms of the param- 
eters of the components on the basis of the combination rule approximation. For the Lennard-- 
Jones potential 

~i~ = (~ + ~2)/2, ~12 ~- I/~ (5) 

and the second formula applies only for molecules with nearly the same ionization energies [I]. 

It is possible to theoretically determine the interaction potential energy for identical 
and for different molecules (most simply for monatomic molecules)* with the help of quantum- 
mechanical methods. Such calculations are particularly important since, for example, in the 
calculation of the transport coefficients in mixtures of alkali metal vapors with inert gases, 
application of the combination rules leads (in principle) to incorrect results because the 
parameters of the model potentials for pure alkali metal vapors are only effective parameters 
[4-6]. They take into account the contribution of triplet (same spin orientation of the 
valence electrons of the atoms) and singlet (opposite spin orientation) interactions between 
the alkali metal atoms.# The total collision integral (cross section) is obtained by summing 
the integrals corresponding to the triplet (with weight 3/4) and singlet (with weight 1/4) 
interactions; but the interaction of metal atoms with inert gas atoms (with two or more 
electrons in the outer shell with pairwise opposite spins) is different in nature and 
splitting of the terms does not occur. 

Quantum-mechanical calculationsof the pair interaction potential energy of molecules 
(or atoms in the simpler case of monatomic gases considered below) is based on the solution 
of the SchrSdinger equation in the Borrr-Oppenheimer approximation of fixed (frozen) nuclei 
for the electron wave function ~(R, r) [7-10]: 

*Inert gases andhot metal vapors are obviously monatomic (impurities of diatomic molecules 
are insignificant). 

#Examples are the interactionsof two hydrogen atoms or the interaction between an alkali metal 
atom and a hydrogen atom. 

Ii0 



H~(R,  r)=E(R) ~(R, r), (6)  

where r is the set of electron coordinates, g is the interaction energy of the electrons moving 
in the field of the nuclei, and the interaction energy of the nuclei. 

The Hamiltonian He takes into account the kinetic energy of the electrons, the energy of 
attraction of the electrons to the nuclei, the energy of repulsion of the electrons and the 
energy of repulsion of the nuclei. In atomic units (a.e.) where m e = e = h = i: 

I +Z~Z , 

where V~ is the Laplacian with respect to the electron coordinates; Z a and Zb, nuclear 
charges of the interacting atoms a and b; ria and rib, distances between the i-th electron 
(since we are treating the electrons of both atoms) and the nucleus a or b; and rij , dis- 
tance between the i-th and j-th electrons. 

The quantSty E(R) obtained from the solution of the SchrSdinger equation (6) determines 
the interaction potential energy of the atoms at distance R (the adiabatic potential): 

(R) : E (R) - -  E (co), (7 )  

where E(~) = E a + Eb is the total energy of the atoms at infinite separation. 

Since the mass of the nucleus of any atom is much larger than the mass of the electron, the 
Born--Oppenheimer approximation will be extremely accurate (the error is of the order of a 
fraction of a percent in the interaction energy), provided that there are no degenerate states 
(different states with the same energy) of the quasimolecule formed by the atoms a and b; this 
is the case of interest to us. 

We note that the above expressions for Z, Q (0 , and ~(~,s) involving ~(R), as determined 
from the solutionof the quantum-mechanical equation (6), are Valid only for high enough 
temperatures, when the DeBroglie wavelength %os : 9~h/(mav=) of the interacting atoms is small 
compared to the size of the atoms and the distance between them. In this case classical 
mechanics can be used to treat the collision (we consider scattering by angles Z>%DB/b) and 
then the formulas for Z, Q~o, ~.~), 0, %, and DI~. 

At low temperatures, when %DB/b (or IDB/O ~I), in the calculation of the transport 
coefficients and also the second virial coefficient, it is necessary to take into account 
quantum-mechanical corrections [i, 2, 11-14]. These corrections are determined by computing 
the ~(l,s) using the Schr~dinger equation for the nuclear motion obtained in the Born-Oppen- 
heimer approximation and using ~(R) as thepotential energy, as discussed above. Usually in 
these calculations, the ~(R) used for the equation describing the nuclear motion is taken to 
be the empirical Lennard--Jonespotential (4) [11-13], or the Kikhar potential [14]. The 
latter potential is called universal in [15] since it simultaneously describes the experi- 
mental data on viscosity, thermal conductivity, and other transport coefficients, as well 
as data on the second virial coefficient. For large IDB/O it is necessary to take into account 
the symmetry properties dependent on whether the interacting atoms have integer spin (Bose-- 
Einstein statistics) or half-integer spin (Fermi--Dirac statistics). 

Quantum corrections of this kind are not very large (a few percent for low temperatures) 
and they are of practical interest only for helium and hydrogen at temperatures of order 10~ 

Below we consider thecalculation of the transport coefficients based on the classical 
~(l,~) , but with the potential ~(R) found quantum-mechanically. In the calculation of ~(R) 
from (6) inthe Born-Oppenheimer approximation, one usually applies the variational method 
of the self-consistent Hartree-Fock field with a linear combination of atomic orbitals and 
the Ruthaan equations [8-10]. The most accurate results are obtained with the inclusion of 
the configurational (or multiconfigurational) interaction, i.e., with the use of Slater deter- 
minants constructed from the single-electron wave functions of the ground state and several 
of the excited states of the system. In these calculations the Co~lomb and exchange (corre- 
sponding to the Pauli exclusion principle* repulsion energies at small and intermediate 

*Recall that according to this principle the electron wave function must be antis}nnmetric (must 
change sign upon permutation of any two electrons but keep the same absolute value). This 
requirement is satisfied when the Slater determinants are used. 
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interatomic distances are calculated, as well as the attractive energy, which reduces at large 
distances to the dispersion energy @disp. The dispersion attraction, also calculated independ- 
ently in the second order of Rayleigh--SchrSdinger perturbation theory, is due to thepresence 
in the atoms (or molecules) of instantaneous dipoles and higher multipele moments arising 
from the motion of the electrons. The energy ~disp for large distances can be represented in 
the form of a multipole expansion, in which each successive term is kept only if it is not 
larger than the prededing term [7, i0, etc]: 

~ d i s ~ R )  = - -  C 6 R  - 8  - -  C8  R - s  - - C ~ o R  - 1 ~  - -  C ~ 2 R  - ~  - -  , . .  ( 8 )  

The energy ~disp is calculated either by solution of the SchrSdinger equation by vari- 
ational methods with the inclusion ofthe configurational interaction, or with the help of 
perturbation theory (the former method is more accurate for intermediate distances). The 
dominant term in the multipole expansion (8) (valid at large distances) is the first 
(dipole-dipole) term. Methods of perturbation theory have also been developed for the 
calculation of the exchange interaction [I0]. 

The determination of the interaction energy on the basis of the variational solution of 
the SchrSdingerequation can becarried out without the use of any empirical parameters. 
This type of nonempirical calculation (ab initio -- from the beginning) either with or 
withoutthe configurational contrihutioncan be done for the interactions of hydrogen atoms 
(in the formation of the diatomic molecule H2), helium, and also alkali metal atoms between 
themselves and with inert gas atoms. We analyze the last case in this review. 

In [16] the pairs Li--He and Na--He wereconsidered* without taking into account configur- 
ational interaction, i.e., the electron interaetionswere taken to be the Coulomb and exchange 
interactions, which are most significant at small and intermediate internuclear distances. 
The first of these interactions leads to the mutual repulsion of the electrons and is taken into 
account in the expression for the energy by the corresponding Coulomb integral. In the core 
the integral includes the energy of attraction of the electrons to the nuclei. The repulsion 
of the nuclei does not affect the electron energiesand can be taken into account separately. 
At intermediate and large distances its contribution to the interatomic energy is approximately 
cancelled by the averaged Coulomb repulsion of the electrons. At these distances the princi- 
pal contribution is the exchange interaction, followed by the dispersion interaction. In 
calculations using the Hartree--Fock method, the exchange interaction due to the repulsion of 
electrons with parallel spins in correspondence with the Pauliprinciple is taken into account 
(this is equivalent to requiring that the wave functions be antisymmetric). In order to 
take into account the correlations of the electrons due to the repulsion of pairs of electrons 
with antiparallel spins, one must include the configurational interaction. 

For the system metal atom--He atom, the contribution of the configurational interaction 
(which includes the dispersion attraction) is not large at intermediate distances since the 
polarizability of helium is small (an order ofmagnitude smaller, for example, than the 
polarizability of argon) and the coefficientC~, which basically determines the dispersion 
energy, is proportional to the polarizability. For large internuclear distances the config- 
urational interaction for the pairs H--He and Li--He is taken intoaccount in [17]. Evidently 
the potential well depths are not very large. For example in the pair Li--He the depth of ~he 
potential well is about 0.07-104 a.e. =2.2~ for internuclear distance R~I2 a.e. = 6.35 A 
(Fig. i).~ For large values of R the energy corresponds to the first two terms of the multi- 
pole expansion formula (8) (for Li--He C6 = 23.8 a.e. and C~ = 1261 a.e.) and for intermediate 
values of R the energy of attraction turns out to be less than according to (8) (in absolute 
value). In Fig. i we show (for R < i0 a.e.) the energy of repulsion according to [16] (with- 
out the configurational interaction). In this case the exchange repulsion is dominant (for 
values of ~(R) around 10-3-10 -2 a.e., about 300-3000~K). Only for large R is the dispersion 
attraction the dominant contrihution. 

*In these calculations and the nonempirical and semiempirical calculations discussed earlier, 
the calculations are performed for the ground and excited states of the metal-inert-gas quasi- 
molecule. In transport (diffusion) calculations, data for the ground state are used. 
+For the pair H-He the depth of the potential well is (according to the calculation of [17] 
about 0.17"10 ~ a.e. = 5.4~ for R~7 a.e. = 3.7~. 
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Fig. I. Potential energy ~ (a.e.) of the inter- 
action of lithium and sodium atoms with helium 
atoms as a function of the internuclear dis- 
tance R(a.e.) according to quantum-mechanical 
calculations: curve i, lithium [16] (without 
the inclusion of the configurational interaction), 
curve 2, lithium [17] (with the inclusion of the 
configurationalinteraction) andcurve 3, sodium 
[16] (without the configurational interaction). 
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Fig. 2. Potential energy 
~(a.e.) of the interaction 
of sodium atoms with argon 
atoms as a function of the 
internuclear distance R(a.e.) 
from the nonempiricalquantum- 
mechanical calculations of [18] 
(with the inclusion of the con- 
figurational interaction). 

Calculations of the complete interaction for small, intermediate, andlarge values of the 
internuclea[ distance with the inclusion of the Coulomb, exchange, and configuration inter- 
actions were carried out in [18] for the pair Na--Ar. In this ease the contribution of the 
configurational interaction at small and intermediate distances is relatively large (see [19] 
for some illustrative graphs). The potential well in this case too turns out to be not very 
deep, about 0.24-10 -3 a.e. or 76~ at R = 9 a.e. (Fig. 2). 

An approximate nonempirical calculation including the interactionof the electrons of the 
outer shells of the atoms (and the effect of the atomic cores with the use of appropriate 
pseudopotentials [20]) was carried out in [21] for the pairs Na--Ar and Na--Xe (with the in- 
clusion of the configuration interaction). For Na--Ar, the value of ~(R) was about 1.3 times 
higher than in [18]. 
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In addition to the nonempirical calculations, a series of semiempirical calculations have 
been published for alkali-atom-inert-gas-atom pairs. These calculations are done using the 
variational method with different simplified Hamiltonians. In [22] the Hamiltonian was 
represented as a sum of the Hamiltonian of the valence electron of the metal atom and the 
interaction potential energy of this electron and the core of the metal atom with the un- 
perturbed inert gas atom. In the potential energy the electrostatic attraction of the 
electron to the inert gas atom (dipole) was taken into account (at large distances this 
interaction approaches the dispersion form with the potential proportional to R -G) and also 
the repulsion between the electron and the inert gas atom and the repulsion between the core 
of the metal atom and the inert gas atom. In the calculation of the repulsive interaction, 
a pseudopotential of the Gombas [23] type is used, where the two terms of this pseudopoten- 
tial correspond to the two types of repulsion discussed above. The pseudopotential is based 
on the Thomas--Fermi statistical modelof the electron shells and is constructed such that 
the Pauli principle is satisfied, i.e., it antisymmetrizes the electron wave functions of 
the system. The repulsive interaction is an exchange interactionand dominates at small 
(or intermediate) internuclear distances, and while the electrostatic attraction dominates 
at large distances. 

In the semiempirical calculations of [22] the free parameter rQ was introduced (the 
equivalent radius of the inert gas dipole) which is much smaller than the internuclear dis- 
tance R. It is chosen by matching the calculated potential well depth (for the ground 
state) with experiment, using the data of [24] from the scattering of an atomic beam of metal n~ 
atoms into inert gases. In [25] this method was improved by increasing the number of 
states (ground state and excited states) of the alkali metal atom* included in the atomic 
base states. In [26, 27] improved results are given for the excited states of the metal--gas 
quasimolecule (in [26] graphs are given also for the ground state). The purpose of the 
calculations [22, 25-27] was to find the potential energy for the excited states using the 
experimental values of the potential well depths in the ground state. 

Other semiempiricalcalculations for the pairs Li--He, Li--Ne, Na--He, Na--Ne are known; 
these calculations involve the use of anempirical potential in the Hamiltonian, obtained from 
experimental data on scattering of electrons by inert gas atoms and alkali metal ions [28- 
30]. Also considered is the interaction of the atomic core of the metal atom with an inert 
gas atom. The interaction of metal and gas atoms at large distances goes over into the 

dispersion interaction. 

The nonempirical and semiempirical calculations of the interaction~potential energy of 
alkali metal atoms with inert gas atoms were used in [19] to determine the diffusion coeffici- 
ent of alkali metal vapors in inert gases. The interaction energy of the atoms (for the ground 
state of the quasimolecule) obtainedin the various quantum-mechanical calculations, were 
approximated by the Monchik potential [3] 

H (R) = B exp (-- R/6), (9) 

where B and 8 are constants. The use of the function (9), which does not have a potential 
well, is admissible because, for the cases considered in the calculation, the potential well 
depths are of the order of one degree (for mixtures with He; Fig. i) or ten degrees (for 
mixtures with argon; for example; Fig. 2) and are small compared to the temperature for which 
the calculations are carried out. For (9) we have, according to [3]: 

o2 ~ ( ~ , D *  4a~p21 (1,1) ' 1 2  :~'~ 12  ----- 
(lO) 

where I(l, I) is the collision integral for I = i, s = 1 and is tabulated in [3] as a function 
= in(B/kT). Further, in the calculations of D12 (or the quantities nDl2 or PD12, which are 

independent of the pressure) the formula (3) was used. If we replace the potential (9) with 
a power law dependence H(R) = BI'R -n, where BI and n are constants [i], similar results are 
obtained. We emphasize that in any case the calculations for binary mixtures are carried out 
not on the basis of the combination rules, but directly from results applying to the inter- 
action of unlike atoms. 

*Recall that the inert gas atom is assumed to be unperturbed (since the interatomic collisions 
are thermal) and in the calculation of the dispersion energy this atom is treated as a dipole. 
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The calculated values of PDI2 for mixtures of alkali metal vapors with inert gases are 
compared in [19] with the experimental data (or with calculations based on generalizations of 
the data; see below). The agreement is normally within theprecision of the experimental 
data (usually • although in some cases the deviation is greater. If the starting point 
is made with sufficiently accurate quantum-mechanical calculations (for example [16] and in 
particular [18]) the agreement is better. Hence even purely theoretical calculations without 
the use of any experimental data give agreement with experiment. 

The transport coefficients can also be calculated with the help of the asymptotic 
quantum-mechanical theory developed in [31-33]. We consider briefly the position of this theory 
as applied to the exchange interaction of an alkali metal atom with one relatively weakly bound 
(low ionization energy) valence electron and an inert gas atom. Then we apply this theory 
to calculate the interaction of an atom of a two-electron metal with an inert gas atom. 

The SchrSdinger equation for the wave function ~ of the valence electron of the unper- 
turbed metal atom has the form 

I 
_ ~_ V~@ + VM~ = Eel), (11)  

where V M is the interaction potential energy of the valence electron with the core of the 
metal atom (the part of the atom remaining after removal of the electron), and E is the energy 
of the metal atom. The wave function P of this electron in the presence of a perturbation due 
to an inert gas atom satisfies a SchrSdinger equation of the form 

_ 1_/_ V~ ~ _}_ VM ~ _[_ VGxl ~ = Es~,  (12)  
2 

where V M is as defined previously and [G is the interaction potential energy of the electron 
with the inert gas atom. The energy E S of the ground state of the metal--gas quasimolecule is 
given by the expression 

E s = E + q~xe~R), (13) 

which does not include the energy of the inert gas atom, which is considered as a whole, since 
its electrons are bound to the nucleus because of the high ionization energies. 

In order to find the exchange energy, equation (ii) is multiplied by ~ and equation (12) 
by �9 and the two resulting equations are subtracted and integrated over a certain volume 
including the inert gas atom (the functions ~and �9 are assumed to be real). In most of the 
region of interaction V G ~0 and therefore ~ .  Hence one can write 

S VvRY~d~= O, S Rr~dQ~ ~ ~=dfl = 1, 

since the functions Dare orthonormal. Then with the help of Green's theorem the volume can 
be expressed in terms of an integral over a spherical surface surrounding the inert gas 
atom, and the exchange energy takes the form 

I 
~exch= 2 (D2 ~VV"dS'  (14) 

where dS is the intrinsic element of this surface. Here we have used the fact that near the 
surface the function ~ is slowly varying, and therefore V~0. 

The wave function P of the valence electron of the metal atom can be represented as a 
function centered at the nuclei of the metal and inert gas atoms [31]: 

XF --- (D (R) -}- (D1 (rl) ---- (D (R) -{- C exp ( - - [~ 'q ) /q ,  (15)  

where rl is the distance from the inert gas nucleus to the valence electron of the metal atom, 
and ~=}/~--2/R. The second term (D1(rl) satisfies (approximately for R >~rl) the SchrSdinger 
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equation (Ii), in which the derivative in the Laplacian is taken with respect to the radius 

rl. Also V~=--IR--qI-I~-~--R -I, E=--~2/2-~--fb where I~ is the ionization potential of the 
metal atom. The quantity V M determined in this way is the potential energy of the Coulomb 
attraction of the electron of the metal atom to its core. The interaction of the electron 
of the metal atom with the inert gas atom is taken into account by the constant C, which 
is determined below. 

The wave function ~(R) of the valence electron of an isolated metal atom also satis- 
fies the Schr~dinger equation (ii) in which the derivative in the Laplacian is taken with 
respect to R. As before, E = - - ~ / 2 ,  V M : = - - R  -~ The asymptotic solution of this equation 
(for ~R~! ) has the form [31, 32]: 

1 

O(R) - -AR ~ exp(--15R) Y~,,,(O, ~), (16) 

where the Ytm(0, ~) are the spherical functions, which characterize the angular (in spherical 
coordinates) distribution of the wave function of the electron witfi angular momentuml and 
component m of the angular momentum in some preferred direction. For s electrons (l = 0, m = 
0), yn,= I/~r~; for p electrons (/ = l) Yt0= ~3/(~c0sO)for m = 0 but if 0 = 0 then r10= 
],2~. We can substitute I/~'-4~ for Yzm and include the factor]/21@l (which for I = 1 is 
equal to /~) separately. 

The asymptotic coefficient A in (16) insures the matching of this solution with the 
Hartree--Fock solution for the valence electron of the atom. The value of A has been determined 
for metals and most other elements (usually to within • [31, 32, 34]. For the atoms 
indicated below, A takes the following values: 

Li Na Zn Cd Hg He Ar 

0,82 0,74 1,69 1,60 1,80 2,87 2,11 

The c o n s t a n t  C in  (15) can be de te rmined  by us ing  the  s c a t t e r i n g  l e n g t h  L of  the  e l e c t r o n  
by the  i n e r t  gas atom [31/ 33, 35] .  Then the  e l e c t r o n  wave f u n c t i o n  c e n t e r e d  on the  i n e r t  gas 
atom is written as: 

~ '  = N exp (-- rl/L)/rl, (17) 

where N is a constant. The average value of L (a.e.) from quantum-mechanical calculations and 
experimental data (on electron mobility in a gas, microwave scattering, etc.) are as follows 

for inert gas atoms: 

He Ne Ar Kr Xe 

1,2 0,2 --1,6 --3,2 --5,8 

If for a known value of L we match the logarithmic derivatives of r11F and QvF' at a cer- 
tain radius rl = p around the inert gas atom, i.e., we require the following boundary condition 

[31, 33]: 

1 d(rl~) I _ 1 d(q~')l _ I _  

rx �9 dq r,=~ rl~'  dG r,=p L (18) 

then we can find the value of the constant C. 

Further calculations give P and if we take p as the radius of integration in (14) then 

%xch= 2~ (L -5 P) (6'P -{- I) �9 ~ (R)/( 1 -- ~'L). (19) 

In order to refine the behavior of the wave function P at distance p from the nucleus of 
the inert gas atom, the first term in (15) can be supplemented by the factor exp(6'p). More 
exactly (according to [31]) this factor (in the approximation rl/R<<l) has the form exp(~'.q 
cos 81), where @~ is the angle between the direction q and the axis R. We simply replace rl by 
9 and take 01 = 0, since the exchange interaction at large R corresponds mainly to the region 
of electron coordinates near the internuclear axis [31]. Finally the factor exp(~'p) obtained 
in this way introduced directly into (19). In the calculations considered below [19] this 
factor is taken into account in ~exch for p # 0 and the results agree with those of the 
nonempirical calculations (only for values of p for the gas). 
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For helium, because of the small size of the helium atom, we take p ~ 0 in this case, 

then [31, 33] 

~xch= 2~L~2 (R)/(1 - -  ~'L). (20) 

For B' = 0 we o b t a i n  t h e  we l l -known Fermi f o r m u l a .  Equa t i ons  (19) and (20) app ly  f o r  R > 2/B 2, 
i.e., for realistic values of ~'. 

Equations (19) or (20), with (16) for ~(R), can be used directly to determine the ex- 
change interaction energy between atoms with a single valence electron (alkali metals) and 
helium atoms. It was shown in [19] that the value of ~exch(R) calculated in this way (for 
p = 0 and L = 1.2 a.e.) for the pairs Li--He and Na--He closely correspond (for R > 2/82) to the 
results of the nonempirical quantum-mechanical calculations of [16]. For metals with a large 
number of valence electrons it is necessary to include an additional factor ~ in (19) or 
(20), which takes into account the difference of the quantum states of such an atom and its 
atomic core (with the electron removed) from the corresponding quantum states of a single- 
electron atom and its atomic core. This factor is calculated with the help of the genealogi- 
cal scheme of Rak and has been applied to the case considered here in [31, 36]. The corre- 
sponding calculations for the interaction of two-electron atoms (of the type Zn, Cd, Hg) with 
a helium atom (or other inert gases) shows that w = 2. This value of ~ is also valid for 
the interaction of two helium atoms. But for the interaction of two-single-electron atoms or 
a single-electron atom and a two-electron atom (for example, an alkali metal atom and helium; 
see above) w = I. 

Calculation of the interaction energy of mercury atoms with inert gases (for ~ = 2) from 
the equation presented above, and:~with the inclusion of the dispersion energy ~disp according 
to (8) and the general expression 

leads to satisfactory agreement [19] with the values obtained from scattering data of atomic 
beams of mercury [37]. The same can be said about the correspondence of the calculated and 
experimental values of ~(R) for the pairs Hg--Ne and Hg--Ar (for ~ = 2)*; O = i.i a.e. (for 
L = 0.2 a.e.) for the first pair and @ = 3.1 a.e. (for L = --1.6 a.e.) for the second. If the 
latter values of @ and L for argon) are used in the calculation of ~exch of the pair Na--Ar 
from (19), then the results [19] for R > 2/~ 2 correspond to those of [18] which were carried 
out without the inclusion of the configurational interaction. 

The diffusion coefficients of zinc, cadmium, mercury, and sodium vapors in helium and 
argon, calculated with the asymptotic expression for ~(R), closely correspond to the experi- 
mental data [19]. 

The asymptotic quantum mechanical theory has also been successfully applied to calcu- 
lations of the interaction of alkali metal atoms and hydrogen [38]. The coefficients in the final 
formula, characterizing the interaction of the valence electron of the metal atom with the 
hydrogen atom, were fit (for the triplet and singlet states) to the results of the nonempir- 
ical quantum-mechanical calculations for lithium and hydrogen atoms [39]. These values also 
holdfor the interaction of other alkali metals with hydrogen atoms. Then with certain approx- 
imations the cross sections ~ 2 ~ 2 ~  l~ and ~2  ~ 2)~ are found (with the inclusion of the 
dispersion attraction, where the values of the coefficients C6 and C8 are taken from the 
calculations of [40]) and these~cross sections are used in the calculation of the transport 
coefficients in mixtures of monatomic alkali metal and vapors and atomic hydrogen. 

The quantum-mechanical solutions nonsidered above were nonrelativistic. Relativistic 
calculations of the electron shells of atoms with the use of the Dirac equation have been 
worked out [41-45]. In these papers all relativistic effects are taken into account, the 
principal one being the spin-orbit interaction, which is stronger the larger the charge Z of 
the nucleus of the atom (although the dependence issomewhat irregular). Because of relativis- 
tic effects, the electron shell of the atom is somewhat compressed (the average value of the 
electron coordinate r, its square r 2, and also the coordinate rma x of maximum electron density 
are all smaller in the relativistic treatment), while the maximum value of the wave functions 

*With the inclusion of the additional factor exp($'p) in equation (19) (for themixtures Hg--Ne, 
Hg~-Ar, and Na--Ar). 
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Fig. 3. Wave function ~(a.e) 
of the valence 7s electron 
of uranium as a function of 
the distance r from the nu- 
cleus (a.e.) from nonrelat- 
ivistic (curve i) and relativ- 
istic (curve 2) calculations. 

(orbitals) and hence the electron densities increase. For cesium (Z = 55), mercury (Z = 80), 
and uranium (Z = 92), the ratio a of the relativistic and nonrelativistic values of rmax for 
the outer orbital and the ratio b of the corresponding energies is [44]: 

Atom O r b i t a l  , a b 

Cs 6s 0,96186 1,03696 
Hg 6s 0,85866 1,25661 
U 7s 0,85685 1,21370 

For r > rma x the relativistic wave function (orbital) is smaller than the nonrelativistic. 
As an illustration we show in Fig. 3 the results for uranium [45]. Roughly the same picture 
must also hold for the 6s orbital of mercury (probably with a compression for smaller r 
approximately as the ratio of the quantities ~= 2~, which for mercury and uranium is given by 
0.876/0.670 ~ 1.3). If we use (20) in the calculation of the potential energy of the exchange 
interaction of mercury atoms and helium, and take into account relativistic effects, then it 
is necessary to decrease the value of the asymptotic parameter A in (16). On average A must 
decrease by about 20% (for interatomic distances corresponding to interaction energies of 
mercury and helium atoms ranging from several hundred degrees to several thousand degrees).* 
This change in the parameter A (actually within the error of its determination in [31, 32, 34]) 
raises the calculated value of the diffusion coefficient of mercury vapor in helium by about 
10% (for the same computational accuracy of DI2). For atoms with smaller values of Z the ef- 
fect of the relativistic correlations to the diffusion coefficient are much smaller. In the 
semiempirical calculations [22, 25] of the interaction potential energy of alkali metal atoms 
with inert gas atoms, the relativistic spin--orbit interaction is taken into account approxi- 
mately in the Schr~dinger Hamiltonian inthe usual way [7] ~by introducing an additional small 
term). 

It follows from the quantum-mechanical (nonrelativistic) relations discussed above that the 
interaction energies of atoms are determined mainly by the energies of the valence electrons 
(the quantities B = 2~) and the polarizabilities ~ of the atoms, since we have approximately 

3 11/2 
12 -- 12 C6-----~alo~zf1~_l.___ This can be used to extend the values of the cross section QC1'I)-o2 ~(11~ I)* 

obtained from experimental data on diffusion of mixtures of metal vapors and gases, with the 
help of Eq. (3) [19, 46, 47]. For the reason indicated above, the ionization energies of the 
metal 11 and gas 12 are taken as units of measurement, as well as the polarizability of the 
gas ~2 (the value of ~i is not required). 

*In the determination of A in [31, 32, 34]; from the nonrelativistic wave functions the spec- 
troscopic value of B was used for all elements. 
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An extensive series of experiments has been done on the determination of diffusion coefficients 
(by the Stefan method) for cesium, potassium,.~sodium, lead, zinc, mercury, cadmium, mangesium 
vapors in helium, argon, and molecular nitrogen [46-49]. Also the experimental data on the 
diffusion of chromium, manganese, iron, cobalt, and nickel in argon at high temperatures was 
used in [50]. The resulting generalized formulas canbe used to calculate diffusion coeffici- 
ents for mixtures not yet studied experimentally (to within an error not greater than the 
experimental error; usually about • 

We discuss now the transport calculations in single-atom alkali metal vapors (without 
gas impurities) using the quantum-mechanical calculations of the atomic interactions. The 
results of the nonempirical quantum-mechanical calculations of the potential curves for two 
lithium atoms with the inclusion of the multiconfigurational interaction are given in [51, 52]. 
The viscosity and thermal conductivity of monatomia lithium vapor have been calculated in 
[53] using the calculations of [51, 52] with the inclusion of the triplet and singlet states. 
The potential curves was approximated by a repulsive exponential potential [3] (Eq. (9)) and 
an attractive potential of the same type [54]. 

The transport coefficients in monatomic alkali metal vapors have been calculated in [31, 
55] using the asymptotic quantum-mechanical theory. In the quantum-mechanical calculations, 
a correction function is introduced into the unperturbed wave functions (16) of the valence 
electron. The correction function approaches unity when R-~oo* The calculations were sim- 
plified by assuming that the derivatives of the correction function with respectto the 
electron coordinates are much smaller than the derivatives of the unperturbed wave functions. 
Therefore these functions vary significantly atdistances of theorder of atomic dimensions, 
whereas the correction function varies notably only over distances of the order of the 
internuclear separation. For two widely separated identical atoms, each with one valence s- 

electron, the following expression is obtained in the asymptotic theory for the exchange 
splitting terms: 

7 

A=BR 2~ exp (--2~R), B = A~f (~), (21) 

where f(B) is the function of B = 2~, defined by a certain definite integral [31, 55]. 

With theinclusion of the dispersion attraction, the interatomic potential energy for 
large R is given as follows for the triplet and singlet states, respectively: 

= A t 2 - - C e A - 6 ,  fl~ = - - A / 2 - - C n R  -6. (22) 

Calculation of the collisionintegrals and transport coefficients [55] yields values which 
agree well with the corresponding experimentaldata; they either agreewith the experimental 
values, or are somewhat higher than them (from 5% for cesium to 15-20% for sodium). 

The disagreement between the calculated and experimental values of the transport co- 
efficients of alkali metal vapors is usually explained by the effect of diatomic molecules 
(dimers) [5, 6, etc.]. The fraction of dimers in these vapors is not large, but the collision 
cross section between dimers and monomers is large, and this significantly affects the vis- 
cosity and thermal conductivity.t Values of the collision integrals (cross sections) have 
been given in [5, 6] with the effect of dimers taken into account. 

The analysis of the experimental data on the transport coefficients for monatomic 
vapors is based on an extrapolation of the experimental values to zero pressure (where the 
dimer contribution must be zero). Analysis of the values given in the literature [5, 6, 56] 
can be used to determine the effective values of the parameters ~ and ~ of the Lennard-Jones 
potential (where these parameters take into account both the triplet and singlet interactions). 
If we again take the polarizability ~ and the ionization energy I as units, then it turns out 
that the ratios ~/~I/3 and e/I are functions of the ionizationenergy (which is dimensionless 
in atomic units) [47]. For the inert gases [i], and also for mercury and zinc vapor [57], 
these dimensionless combinationsare also functions of the ionization energy. Calculations 
of the viscosity and thermal conductivity of lithium vapor [47] with the use of the above 
dependences leads to practically the same results as the more complete theoretical calculations 
[53, ~s]. 

*A similar method was used in [38] in the asymptotic calculation of the interaction of alkali 
~etal atoms with hydrogen atoms. 
+However the presence of dimers weakly affects the diffusion of monomers in mixtures with gases, 
particularly for low concentrations of metal vapor. 
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NOTATION 

~, dynamic viscosity; %, thermal conductivity; DIe, coefficient of mutual diffusion in 
a binary mixture; m, molecular mass of the single-component gas; k, the Boltzmann constant; T, 
absolute temperature; o, geometrical parameter of the interaction potential energy @ of the 
molecules; e, depth of the potential well; R, distance between atoms (or molecules) or the 
nuclei in the quantum-mechanical formulas; Cv, specific heat of the gas at constant volume; 
n = P/kT, total number of molecules per unit volume; P, total pressure; m12 = mlm2/(ml + m2), 
reduced mass of two molecules of types i and 2; X, angle of deflection (scattering) in the 
collision of molecules in the center of mass system; b, impact parameter; g, relative velocity 
of the molecules; Rm, distance of closest approach of the molecules during the collision; 
me and e, mass and charge of the electron; h = h/2~, h = Planck's constant; ma, mass of an 
atom; Va, velocity of motion of an atom; ~exch and ~disp, exchange and dispersion inter- 
action energies between atoms; Ii and Iz, first ionization potentials (energies) for the 
metal and gas atoms; S = ~; ~l and ~z, polarizabilities of the metal and gas atoms; A, 
coefficient in the asymptotic electron wave function (16) (the asymptotic coefficient); L, 
scattering length of an electron by an atom; A, exchange splitting interaction energy of atoms 
with a single valence s-electron. 
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